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Abstract
Bamboos (Bambusoideae, Poaceae) are multiple-purpose perennial grasses, which display a growing production chain in Brazil.
One of the main bottlenecks is high-quality supplying of plantlets, then requiring efficient mass propagation methods, such as
micropropagation. Contamination by microorganisms is recurrent in bamboo in vitro cultures, although some of those manifes-
tations are considered endophytes harboring plant growth promotion potential. The isolation of endophytic bacteria from in vitro
cultures ofDendrocalamus asper and Bambusa oldhamiiwas performed to assess their potential growth-promoting effect in co-
cultivation with in vitro plants of Guadua chacoensis, an economically promising bamboo species. Among the total bacterial
collection (32 isolates), all of them showed growth-promotion potential as indole compounds-producers. Sequences of 16S
rRNA genes from eight selected isolates were newly generated, and the BLASTn similarity test recovered four bacterial genera
(Bacillus, Brevibacillus, Serratia, and Atlantibacter) and six species. The co-cultivation experiment was carried out with three
isolates selected based on their low- (Ba16), medium- (Ba03), and high-yield (Ba24) production of indole compounds, and
Bayesian inferences strongly supported them as Bacillus subtilis, Serratia marcescens, and Brevibacillus parabrevis, respec-
tively. The co-cultivation with three bacterial isolates, and their dilution levels, did not influence shoot or root growth and,
however, did not cause apparent impairment for G. chacoensis in vitro cultures. Taken together, the isolation of endophytic
microorganisms from field-growth bamboo clump and its co-cultivation with in vitro cultures of bamboos is possible, encour-
aging a continuous discovery and improvement of micropropagation techniques.
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Introduction

Bambusoideae subfamily (Poaceae) encompasses 127 genera
and 1680 species classified in woody (Bambuseae and
Arundinarieae tribes) and herbaceous lineages (Olyreae tribe),
representing the main grass lineage with diversification in

forest habitats (Soreng et al. 2017; Clark and Oliveira 2018).
With a worldwide distribution, bamboos are multipurpose
plants, providing crucial environmental, social, and economic
benefits as important non-timber resources (Clark et al. 2015).
Even though Brazil is one of the main centers of diversity and
endemism in the Neotropics, bamboo exploitation is still not
widespread, especially due to the abundant traditional timber
industry and technological gaps related to the appropriate use
of exotic and native species (Nogueira et al. 2017; Clark and
Oliveira 2018).

One of the main limitations for the consolidation of the
bamboo productive chain in Brazil is the difficulty of supply-
ing plantlets on a large scale with high genetic and
phytosanitary quality (Sánchez et al. 2011). Thus, new mass
propagation methods are being developed to meet the increas-
ing plantlet’s demands, such as micropropagation (Mudoi
et al. 2013; Singh et al. 2013; Sandhu et al. 2018), in which
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bamboo in vitro culture are frequently associated with the
major problem of contamination by microorganisms (Leifert
and Cassells 2001; Ramanayake et al. 2006).

Microorganisms’ contamination in presumed axenic sys-
tems, especially by bacteria, is mainly reported as having
harmful effects on in vitro plant development (Orlikowska
et al. 2017). However, many of these microorganisms can
have an endophytic nature capable of internally colonizing
plant tissues without causing tissue or developmental damages
to the host (Hardoim et al. 2008; Reinhold-Hurek and Hurek
2011). Within those microorganisms, some endophytic bacte-
ria have remarkable potential benefits to the plant host as
symbiotics relationships, either by direct or indirect pathways,
such as biological nitrogen fixation, secretion of plant hor-
mones, and mechanisms of disease resistance and adverse
environmental tolerance (Mano and Morisaki 2008;
Ramakrishna et al. 2019).

Due to the complex interaction of endophytes with their
hosts, efforts are being taken place focusing on the under-
standing of functional biology and potential application of
those microorganisms (Moshynets et al. 2012; Pérez-
Montaño et al. 2014). Each plant species can host one or more
endophytes, harboring diverse microbiological communities
associated with different parts and stages of development of
the plant, along with cultivation and ecological systems
(Rosenblueth and Martínez-Romero 2006; Liu et al. 2017;
Zheng and Lin 2020). Isolation of beneficial bacterial strains
and in vitro plant co-culture, under controlled conditions,
could promote symbiotic relationships towards plant growth
and biotic and abiotic stress tolerance, process known as
biotization or bio-priming (Nowak 1998; Lim et al. 2016;
Mahmood et al. 2016).

A well-recognized endophytic bacterial stimulus is the aux-
in indole-3-acetic acid (IAA) biosynthesis, a phytohormone
which plays crucial role in controlling many plant physiolog-
ical processes (Duca et al. 2014; Moronta-Barrios et al. 2018;
Zhang et al. 2019a). A wide range of plant-associated bacteria
are reported as IAA producers, which could promote, in a
dose-dependent manner, root growth and mitigate stress at
ex vitro acclimatization phases of in vitro plants (Patten and
Glick 2002; Kargapolova et al. 2020; Pace et al. 2020).

Although several endophytic bacterial communities have
been identified in bamboo species (Han et al. 2009;
Moshynets et al. 2012; Yuan et al. 2015; Liu et al. 2017;
Zhang et al. 2019b; Singh et al. 2020; Zheng and Lin 2020),
they are mostly treated as harmful contaminants in in vitro
cultures (Nadha et al. 2012; Ray and Ali 2017; Ray et al.
2017; Leão et al. 2020), and little is known about their sup-
posed role in vitro in plant growth. Thus, considering high
contamination rates and the endophytic bacterial diversity in
bamboo species, the identification of those microorganisms in
presumed axenic in vitro cultures and assessment of their po-
tential growth-promotion effect would be an important tool to

overcome methodological limitations and to improve bamboo
micropropagation methods (Ramanayake et al. 2006; Abreu-
Tarazi et al. 2010; Singh et al. 2020).

Dendrocalamus asper and Bambusa oldhamii are bamboo
species with remarkable commercial potential, and, in both
genera, a great diversity of endophytes, including plant
growth-promoting bacteria, was recently described (Benton
2015; Singh et al. 2020). In the present work, we characterized
the bacterial isolates obtained from in vitro cultures of
B. oldhamii andD. asper, using morphological culture param-
eters, production of indole compounds, and molecular tech-
niques, and evaluated their growth-promoting effects in vitro
co-culture of Guadua chacoensis, an economical promising
bamboo species in southern Brazil.

Materials and Methods

Plant material and culture conditions The explants were col-
lected from 7-old field-grow clumps in Santa Rosa de Lima,
Santa Catarina, Brazil. In vitro cultures of Dendrocalamus
asper (Schult. & Schult. f.) Backer ex K. Heyne and
Bambusa oldhamii Munro were established using nodal seg-
ments as explants, which were subjected to disinfestation pro-
cedures prior to in vitro introduction, according to Santos et al.
(2019). Since the employed disinfestation procedures were
efficient for complete elimination of epiphytic bacteria, and
then the cultures were considered aseptic, those that manifest-
ed late microorganism’s growth were selected for isolation as
putative endophytic bacterial strain.

Isolation and morphological characterization of bacterial iso-
lates Endophytes bacterial colonies were isolated and purified
by streaking-plating, on Luria Bertani (LB) solid media
(Sigma-Aldrich, St. Louis, MO) for 24 to 48 h at 28°C, until
morphological identification of a single colony was obtained.
Morphological characteristics of isolated colonies, such as
color, size, shape, elevation, border, transparency, structure,
and Gram stain, were recorded in a matrix according to
Rodina (1972).

Quantification of indole compounds Simultaneously to the
morphological characterization, the isolates were subjected
to qualitative and quantitative analysis of indole compounds
(IC) production, following the spectrophotometric method
based on Salkowski’s reagent, with modifications
(Glickmann and Dessaux 1995). The isolates were incubated,
in triplicate, in 5 mL of LB liquid medium, at 30°C from 24 to
72 h in the Biochemical Oxygen Demand (BOD) chamber.
Afterwards, the cultures were mixed with the Salkowski re-
agent (0.45% FeCl3 (w/v) in 10.2 M H2SO4 (both from
Sigma-Aldrich)), in a ratio of 1:1 (v/v), and kept for 30 min
in dark at room temperature (25°C ± 2°C). The presence of IC
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was visually evaluated by the development of pink color in the
mixture the optical density was recorded at 540 nm in order to
estimate IC concentration against the standard curve of syn-
thetic IAA (in the range of 1 to 10 μg mL−1), according to
Radwan et al. (2005). Then, the bacterial isolates were classi-
fied into low-yield (IC ≤ 4 μg mL−1), medium-yield (4 < IC
≤10 μg mL−1), and high-yield categories (IC > 10 μg mL−1)
by comparing means of IC concentration.

Isolates’ identification by 16s rRNA sequencing and phyloge-
netic inferences Among the total bacterial collection, eight
isolates encompassing the three yield-based categories were
selected for molecular characterization by 16S rRNA partial
sequencing (Ba03, Ba05, Ba16, Ba18, Ba21, Ba24, Ba29, and
Ba32). Bacterial genomic DNA was extracted using DNeasy
Blood & Tissue Kit (Qiagen. Inc., Valencia, CA) and evalu-
ated in 0.8% agarose gel electrophoresis (Sambrook and
Russell 2001). Amplification of 16S rRNA gene was per-
formed by polymerase chain reaction (PCR) using universal
primers 27F/1492R (Lane 1991). Amplification products
were examined by 1.5% agarose gel electrophoresis and fur-
ther purified by differential precipitation with PEG8000 solu-
tion (20% PEG8000 and 2.5M NaCl (both from Sigma-
Aldrich)) (Lis and Schleif 1975).

Sequencing reactions were carried out using the Big Dye
Terminator cycle sequencing kit, version 3.1 (Applied
Biosystems, Foster City, CA), and further purified by the eth-
anol/EDTA/sodium acetate precipitation protocol. The bidi-
rectional sequencing was performed at an ABI 3500xL auto-
mated sequencer (Applied Biosystems), and consensus se-
quences were generated after trimming low-quality nucleo-
tides using CLC Main Workbench v.8.0.1 software. The se-
quences were submitted to BLASTn (Nucleotide Basic Local
Alignment Search Tool) at the National Center for
Biotechnology Information database (NCBI; http:/www.
ncbi.nlm.nih.gov/Blast) for similarity analysis. Thus, the
highest identity accesses (at least 95%) were selected for
further phylogenetic inferences. All sequences generated
were deposited to the GenBank database under the accession
numbers MT135750.1–MT135757.1.

Based on the selected bacterial isolates used on the follow-
ing co-cultivation experiment, four datasets were generated
encountering BLASTn similarity results of isolates (i) Ba03,
(ii) Ba16, (iii) Ba24, and (iv) all eight 16S rRNA partial region
sequences obtained in the present study (Isolates).
Individually, each dataset was aligned by the ClustalW algo-
rithm (Thompson et al. 1994), incorporated in CLC Main
Workbench v.8.0.1 software, and manually edited. Based on
the Akaike information criterion (AIC) implemented on
jModelTest v.3.5 (Posada 2008), the best-fit model of se-
quence evolution corresponding to each dataset was assigned
as follows: TIM+I+G for Ba03, HKY+I+G for Ba16, TrN+I+
G for Ba24, and TrN+G for Isolates.

Bayesian Inference (BI) phylogenetic analysis was per-
formed in MrBayes v.3.2.6 (Ronquist and Huelsenbeck
2003) on CIPRES Science Gateway V.3.1 (www.phylo.org;
Miller et al. 2010). The BI analysis was carried out for two
independent runs with 4 chains each, and 200,000 generations
with tree sampling every 100 generations. The first 25% of
tree sampling was discarded as burn-in, and posterior
probabilities (PP) were estimated by constructing a majority-
rule consensus with the remaining trees. Trees were visualized
and edited with FigTree v.1.3.1 (Rambaut 2010). Escherichia
coli 16S rRNA partial sequence (NR024570.1) was used as an
outgroup.

In vitro co-culture of isolates with Guadua chacoensis For
the in vitro co-cultivation experiment, previously established
Guadua chacoensis (Rojas Acosta) Londoño& P.M. Peterson
in vitro cultures were used. Clumps with 3 to 6 shoots were
obtained from the multiplication phase with 15 μM of 6-
benzylaminopurine (BAP) (Sigma-Aldrich) and subcultured
on Murashige and Skoog (MS) medium (Murashige and
Skoog 1962) (Sigma-Aldrich) supplemented with 2 mL L−1

o f More l v i t amins (More l and Wetmore 1951)
(PhytoTechnology Laboratories, Lenexa, KS), 30 g L−1 su-
crose, and gelled with 2 g L−1 Phytagel® (Sigma-Aldrich).
The pH of the culture media was adjusted to 5.8 before
autoclaving (121°C and 1.3 atm) for 15 min. The cultures
were kept in a growth room under controlled temperature
(24°C ± 2°C) and photoperiod (16h) conditions. In order to
minimize residuals effects of BAP, the cultures were main-
tained during 40 d in absence of plant growth regulators.
Afterwards, the clumps were subcultured into test tubes con-
taining 20 mL of MS basal culture medium, using MS medi-
um as a control treatment (control I).

The selected bacterial isolates (Ba03, Ba16, Ba24) were
cultured in a conical flask with 300 mL of liquid LB culture
medium and maintained at 30°C for 24 h. These three bacte-
rial cultures and LB medium (control II) were subjected to
serial dilutions of 10−6, 10−7, and 10−8. Then, 100 μL of each
concentration of bacterial cultures and LB medium was inoc-
ulated on MS medium in the basal region of the in vitro
clumps after 15 d of beginning subculture. These plants were
subcultured 15 d before the bacterial inoculation to check the
non-occurrence of alien microorganism contamination in
plants’ cultures during the medium transference. Growth eval-
uation was assessed by morphological parameters, consisting
of the quantification of root number (NR) and length (LR) and
shoot height (HS). Plant multiplication rate was determined by
the ratio between the different numbers of shoots per clump at
30 d of co-cultivation (day 45) and the initial number of shoots
(day 0) per initial number of shoots.

The experimental design was bifactorial (4 × 3) with an
additional control. The first factor consisted of three bacterial
isolates and LB medium as control (named control II). The
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second factor was composed of three dilutions (10−6, 10−7,
and 10−8) of each level of the first factor. The additional con-
trol (control I) was the conventional in vitro culture in MS
medium. Each experimental unit consisted of one test tube
containing 20 mL of MS medium, with a clump of 3 to 6
shoots. The experiment was conducted with three replicates
per treatment and was repeated three times under the same
conditions. Quantitative data were submitted to analysis of
variance (ANOVA) and SNK test (5%) of mean separation,
according to Compton (1994), on the R platform (R Core
Team 2020), and using the Agricolae package (Mendiburu
2019).

Results

Isolation and morphological characterization of endophytic
bacteria Endophytic bacteria from in vitro cultures of
Dendrocalamus asper and Bambusa oldhamii were isolated
by repeated streaking-plating method, revealing consistent
pure bacterial isolates. Among the bacterial isolates (Ba01-
Ba32), 100% were Gram-positive, and the characterization
of the colonies by color, size, elevation, border type, transpar-
ency, and structure is summarized in Table 1.

Regarding growth rate, the Ba03 isolate (Serratia
marcescens) showed the highest average, ranging from 30 to
300 CFU mL−1 of medium, whereas the Ba24 isolate
(Brevibacillus parabrevis) showed an average growth of up
to 30 CFU mL−1 medium. The Ba16 isolate (Bacillus subtilis)
was not possible to quantify, because the colonies growth was
less than 30 CFU, so the count was disregarded.

Quantification of indole compounds The spectrophotometric
method based on Salkowski’s reagent suggests that all the
endophytic bacterial strains were able to produce indole com-
pounds in the growing media, ranging from 3.0 μg mL−1

(Ba16) to 15.73 μg mL−1 (Ba24), with an average of
8.41 μg mL−1 (Table 1). The three bacterial isolates selected
for the subsequent co-cultivation experiment were representa-
tive of distinct groups, those based on the lowest- (Ba16),
medium- (Ba03; 9.03 μg mL−1) and highest-yield (Ba24) pro-
duction of IC.

Molecular characterization and phylogenetic inferences Eight
partial sequences of the 16S rRNA gene were generated,
selecting bacterial isolates with the low- (Ba16, Ba18,
Ba32), medium- (Ba03, Ba05, Ba21), and high-yield (Ba24,
Ba29) IC production. Among those, BLASTn search revealed
the greatest similarity with four genera belonging to three
distinct families: Bacillus (Bacillaceae), Brevibacillus
(Paenibacillaceae), and Atlantibacter and Serratia (both
Enterobacteriaceae) (Table 2). Phylogenetic analysis based
on the 16S rRNA partial sequences of the eight isolates

resolved four main clades with high support (PP = 1),
distinguishing the four genera clustered in their respective
families, reinforcing BLASTn results (Fig. 1).

Revealing great identity with Serratia genus, the topology
clustered Ba03 (medium-yield IC production) with Serratia
accessions (PP = 0.78), forming a strongly supported clade
with S. marcescens species (PP = 0.93) (Fig. 2). The isolate
Ba16 (low-yield IC production) presented identity exclusively
with Bacillus genus, with wide range variation of species.
Although this isolate showed highest identity with B. subtilis
(98.71%) (Table 2), it clustered with B. subtilis accessions
with low support (PP = 0.61) (Fig. 3). The greatest similarity
of Ba24 isolate (high-yield IC production) with Brevibacillus
parabrevis (96.89%) is strongly supported (PP = 0.98) by the
forming clade with such accessions (Fig. 4). Those results
were considered as accurate species identification for the
aforesaid bacterial isolates, supported by BLASTn search
results.

In vitro co-culture of isolates with Guadua chacoensis Three
days after inoculation, bacterial growth was observed in the
bamboo rhizosphere and the surface of the culture media for
all the inoculation treatments, in which no contamination with
alien microorganisms along the in vitro multiplication phases
was visually detected (Fig. 5). An overview of the effects of
co-cultivation of the three bacterial isolates on the develop-
mental parameters of in vitro plants of G. chacoensis is de-
scribed in Table 3.

Regarding differences between treatments, means combin-
ing inoculum dilutions, the results showed that no bacterial
treatment promoted relevant plant growth effect on the ana-
lyzed parameters, suggesting a neutral growth potential com-
pared to both control treatments. Yet, plants co-cultivated with
Ba03 isolate (S. marcescens) showed the shortest shoot height
(3.26 cm) and root lengths (2.55 cm), and those co-cultivated
with Ba24 isolate (Br. parabrevis) also showed shorter root
lengths (3.58 cm) compared to control treatments (Table 3).

The effects of inoculum dilutions were similar to the means
of treatments, showing no positive plant growth effect
(highest values) when compared to both controls. However,
lower dilutions rates (10−6 and 10−7) resulted in low values in
plant multiplication rate with Ba16 (B. subtilis) co-culture, as
well as in number and root lengths of plant co-cultivated with
Ba24 isolate (Br. parabrevis), suggesting an inhibitory effect
in those parameters (Table 3).

Discussion

Manifestation of endophytic bacteria in in vitro plant tissue
culture is commonly treated as harmful contaminants, even if
this plant-association dynamic is generally considered to be
present in all living forms (Turner et al. 2013; Orlikowska
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et al. 2017). Some endophytes can be classified as plant
growth-promoting bacteria (PGPB), i.e., those capable to pro-
mote a wide range of beneficial effects on plant health and
physiology in terms of growth rate, tolerance to environmental
stress, and pathogen control (Kim et al. 2011; Glick 2012;
Ramakrishna et al. 2019). Although PGPB increases plants’
growth potential, their application in plant micropropagation
systems is still rare (Abreu-Tarazi et al. 2010; Orlikowska
et al. 2017; Kargapolova et al. 2020).

The composition of endophytic population is not necessar-
ily plant species–specific and may be dependent on tissue and
developmental stage, as well as ecological culture system and
environmental conditions at the time of sampling (Moshynets

et al. 2012; Liu et al. 2017; Zhang et al. 2019b; Zheng and Lin
2020). In total, the 32 endophytic bacteria isolated from
in vitro plants of B. oldhamii and D. asper were capable to
produce IC, group to which indole-3-acetic acid (IAA) be-
longs. This is an important phytohormone produced by many
strains of PGPB and is known to be involved in several plant
growth responses, and as a major factor for stimulation of root
system development (Spaepen et al. 2007; Duca et al. 2014;
Goswami et al. 2016).

Based on their IC production and potential use in the co-
cultivation experiment, eight bacterial isolates were identified
by 16s rRNA partial sequences and phylogenetic analysis, a
widely used tool for identification of bacterial strains

Table 1. Morphological
characterization and indole
compounds (IC) production yield
of bacterial isolates from in vitro
cultures of Dendrocalamus asper
(Schult. & Schult. f.) Backer ex
K. Heyne and Bambusa oldhamii
Munro, based on Rodina’s meth-
odology (1972)

Isolate* Size (d) Color (e) Shape Border Elevation Structure IC (f) (μg mL−1)

Ba01 M R/− Rounded Smooth Convex Filiform 11.10 ± 0.56

Ba02 M R/− Rounded Smooth Convex Filiform 11.08 ± 0.10

Ba03 (b) M R/− Rounded Smooth Convex Filiform 9.03 ± 0.12

Ba04 L W/+ Rounded Smooth Convex Filiform 10.39 ± 0.22

Ba05 L W/+ Rounded Smooth Convex Filiform 9.68 ± 0.21

Ba06 M W/+ Rounded Smooth Convex Filiform 8.64 ± 0.39

Ba07 M R/− Rounded Smooth Convex Filiform 11.08 ± 0.25

Ba08 M R/− Rounded Smooth Convex Filiform 9.92 ± 0.22

Ba09 M R/− Rounded Smooth Convex Filiform 10.43 ± 1.62

Ba10 M R/− Rounded Smooth Convex Filiform 9.79 ± 0.59

Ba11 S W/− Rounded Smooth Convex Filiform 4.15 ± 0.24

Ba12 M Y/+ Rounded Smooth Flat Filiform 7.68 ± 0.17

Ba13 M R/− Rounded Smooth Flat Filiform 10.80 ± 0.36

Ba14 M R/− Rounded Smooth Flat Filiform 9.90 ± 0.71

Ba15 S W/+ Rounded Corrugated Flat Filiform 3.98 ± 0.44

Ba16 (a) L W/− Wrinkled Irregular Elevated Friable 3.00 ± 0.27

Ba17 S W/+ Rounded Corrugated Flat Filiform 6.47 ± 0.78

Ba18 M W/− Wrinkled Irregular Droplet-like Friable 3.47 ± 1.04

Ba19 S W/+ Rounded Smooth Elevated Filiform 4.25 ± 1.06

Ba20 L W/− Rounded Smooth Convex Filiform 4.85 ± 0.27

Ba21 S Y/+ Rounded Smooth Convex Filiform 9.67 ± 0.10

Ba22 L W/− Rounded Smooth Convex Filiform 6.36 ± 1.68

Ba23 S Y/+ Rounded Smooth Convex Filiform 11.49 ± 4.45

Ba24 (c) S Y/+ Rounded Smooth Convex Filiform 15.73 ± 4.13

Ba25 M W/− Rounded Smooth Convex Filiform 12.02 ± 0.45

Ba26 S Y/− Rounded Smooth Flat Filiform 8.42 ± 0.05

Ba27 S Y/− Rounded Smooth Flat Filiform 6.11 ± 0.56

Ba28 S Y/+ Rounded Smooth Convex Filiform 8.60 ± 1.42

Ba29 S Y/+ Rounded Smooth Convex Filiform 14.51 ± 2.27

Ba30 S W/− Rounded Smooth Convex Filiform 3.18 ± 0.40

Ba31 S Y/+ Rounded Smooth Convex Filiform 9.88 ± 0.66

Ba32 L W/− Rounded Corrugated Elevated Friable 3.34 ± 0.18

low-yield, (b) medium-yield, and (c) high-yield indole compounds (IC) production group; (d) size: small (S), me-
dium (M), and large (L); (e) color/transparency: red (R), white (W), and yellow (Y); with (+) or (−) without
transparency; (f) mean ± standard error of mean
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(Chakraborty et al. 2014). Encompassing two distinct phyla,
Gammaproteobacteria and Firmicutes, 6 species and 4 genera
were recovered (viz. Serratia, Atlantibacter, Brevibacillus,
and Bacillus). Those phyla are considered major groups of
PGPB (Ramakrishna et al. 2019), being isolated as endo-
phytes in several crops (Rojas-Tapias et al. 2012; Moronta-
Barrios et al. 2018; Deng et al. 2019) and also in bamboo
species (Han et al. 2009; Zhang et al. 2019b; Singh et al.
2020; Zheng and Lin 2020).

Morphological characterization seems congruent with mo-
lecular identification (Realpe et al. 2002), with exception of
those neighboring the Enterobacteriaceae family
(S. marcescens—Ba03; and Atlantibacter hermanii—Ba21
and Ba29). Those were characterized asGram-positive instead

of the Gram-negative expectation (Octavia and Lan 2014),
which may be due to the unproper remotion of lipids from
the bacterial cell wall, and retention of the primary dye, then
causing inaccurate Gram-positive staining. It is important to
note that this is the first report of B. proteolyticus (Ba05) and
A. hermanii (Ba21 and Ba29) as endophytes in bamboos
species.

The three isolates used in the co-cultivation experiment
were taxonomic designated as Bacillus subtilis (Ba16),
Serratia marcescens (Ba03), and Brevibacillus parabrevis
(Ba24), bacterial species widely recognized as PGPB and
employed in biotization/bio-priming and phytoremediation
practices (Mohamed and Gomaa 2012; Almaghrabi et al.
2014; Mahmood et al. 2016; Akinrinlola et al. 2018). They

Table 2. BLASTn results for
similarity search of the 16S rRNA
partial sequences generated from
bacterial isolates from in vitro
plants of Bambusa oldhamii
(Schult. & Schult. f.) Backer ex
K. Heyne and Dendrocalamus
asper Munro

Isolate Sequence size
(pb)

GenBank
accession n. (a)

Nearest bacterial
species

GenBank accession n.
(BLASTn)

Identity
(%)

Ba03 1380 MT135750 Serratia
marcescens

NR_114043.1 98.04%

Ba05 1370 MT135751 Bacillus
proteolyticus

NR_157735.1 99.12%

Ba16 1390 MT135752 Bacillus subtilis NR_102783.2 98.71%

Ba18 1395 MT135753 Brevibacillus
parabrevis

NR_113589.1 99.28%

Ba21 1396 MT135754 Atlantibacter
hermannii

NR_104940.1 97.64%

Ba24 1415 MT135755 Brevibacillus
parabrevis

NR_113589.1 96.89%

Ba29 1408 MT135756 Atlantibacter
hermannii

NR_104940.1 97.09%

Ba32 1412 MT135757 Bacillus aerius NR_118439.1 99.29%

(a) GenBank accession number for the eight generated 16S rRNA partial sequences in the present study

FIGURE 1. Bayesian inference tree
based on the 16S rRNA partial
sequences of the eight bacterial
isolates. Clusters of genera
indicate their respective families
(Paenibacillaceae for
Brevibacillus, Bacillaceae for
Bacillus, and Enterobacteriaceae
for Serratia). Names of each
isolate were assigned after
BLASTn search. Numbers on the
nodes represent Bayesian
posterior probability (PP). Round
circles represent PP = 1.
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have been isolated and characterized as endophytes in several
plant species, including bamboos, and have expressed plant
growth potential in several different manners (Thomas and
Soly 2009; Chakraborty et al. 2010; Moshynets et al. 2012;
Yuan et al. 2015; Eevers et al. 2016; Asaf et al. 2017; Ray
et al. 2017; Moronta-Barrios et al. 2018; Fancello et al. 2020;
Pace et al. 2020).

Despite the remarkable positive correlation between
B. subtilis and S. marcescens strains and IAA production
(Almaghrabi et al. 2014; Goswami et al. 2015; Asaf et al.
2017), the two corresponding isolates, Ba16 and Ba03, were
placed within the low- and medium-yield IC production cate-
gories, respectively. It is worthy to mention that the employed

spectrophotometric method using Salkowski reagent is a
widely used but simple technique, since it reacts with indole
derivatives others than specifically IAA, misleading general
quantification of IAA produced by PGPB (Gutierrez et al.
2009; Goswami et al. 2015; Patel et al. 2015). Bacterial
IAA biosynthesis seems to be regulated by growth stage and
culture media conditions, such as pH, carbon and oxygen
sources, temperature, and environmental stress levels affect-
ing bacterial colonies, resulting in a yield variation among
strains (Spaepen et al. 2007; Swain and Ray 2008).

Several in vivo and in vitro assays revealed distinct effects
on PGPB IAA producers in plant developmental parameters,
those being positive, neutral, or negative (Ulrich et al. 2008;

FIGURE 2. Bayesian inference tree
based on the 16S rRNA partial
sequences of Ba03—Serratia
marcescens—after BLASTn.
Numbers on the nodes represent
Bayesian posterior probability
(PP). Round circles represent PP
= 1.

FIGURE 3. Bayesian inference tree
based on the 16S rRNA partial
sequences of Ba16—Bacillus
subtilis—after BLASTn.
Numbers on the nodes represent
Bayesian posterior probability
(PP). Round circles represent PP
= 1.
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Smyth et al. 2011; Arslan and Akkaya 2020; Kargapolova
et al. 2020; Pace et al. 2020). Bacterial IAA producers interact
with plants in a spatiotemporal manner, in which the re-
sponses are primarily dependent on plant endogenous IAA

content and sensitivity to exogenous IAA (Spaepen et al.
2007; Gutierrez et al. 2009). The growth-promotion stimulus
of the three bacterial inoculations, and their dilution levels, in
co-cultivation with in vitro plants of G. chacoensis, was

FIGURE 4. Bayesian inference tree
based on the 16S rRNA partial
sequences of Ba24—Brevibacilus
parabrevis—after BLASTn.
Numbers on the nodes represent
Bayesian posterior probability
(PP). Round circles represent PP
= 1.

Table 3. Multiplication rate, number and height of shoots, and number and length of roots of Guadua chacoensis (Rojas Acosta) Londoño in vitro
plants co-cultivated with bacterial isolates

Inoculum Dilution Shoots Roots

Multiplication rate Height (cm) Number Length (cm)

MS (control I) - 2.25 ± 0.24 A 3.91 ± 0.15 A 4.59 ± 0.33 A 6.38 ± 0.29 A

LB (control II) 10−6 2.06 ± 0.45 a 3.36 ± 0.28 a 2.78 ± 0.68 a 5.54 ± 0.57 a

10−7 1.92 ± 0.23 a 3.70 ± 0.20 a 4.28 ± 2.11 a 5.78 ± 0.74 a

10−8 1.81 ± 0.26 a 4.01 ± 0.18 a 3.11 ± 0.40 a 5.91 ± 0.96 a

Mean 1.93 ± 0.07 A 3.69 ± 0.19 A 3.39 ± 0.45 A 5.74 ± 0.11 A

S. marcescens (Ba03) 10−6 2.26 ± 0.38 a 3.28 ± 0.11 a 4.22 ± 1.18 a 2.56 ± 0.47 a

10−7 1.94 ± 0.21 a 3.15 ± 0.06 a 2.56 ± 0.29 a 2.54 ± 0.17 a

10−8 2.40 ± 0.34 a 3.35 ± 0.15 a 2.89 ± 0.73 a 2.55 ± 0.62 a

Mean 2.20 ± 0.13 A 3.26 ± 0.06 B 3.22 ± 0.51 A 2.55 ± 0.01 B

B. subutilis (Ba16) 10−6 1.82 ± 0.02 b 3.80 ± 0.19 a 3.78 ± 1.37 a 5.88 ± 1.84 a

10−7 1.95 ± 0.10 b 3.85 ± 0.15 a 3.67 ± 0.84 a 5.22 ± 1.28 a

10−8 2.30 ± 0.07 a 3.90 ± 0.10 a 4.33 ± 0.69 a 6.35 ± 0.54 a

Mean 2.02 ± 0.14 A 3.85 ± 0.03 A 3.93 ± 0.21 A 5.82 ± 0.33 A

Br. parabrevis (Ba24) 10−6 2.06 ± 0.49 a 3.72 ± 0.45 a 2.33 ± 0.51 b 1.68 ± 0.63 b

10−7 1.72 ± 0.11 a 3.74 ± 0.26 a 1.89 ± 0.48 b 3.25 ± 0.49 ab

10−8 2.16 ± 0.29 a 3.78 ± 0.11 a 7.22 ± 1.78 a 5.81 ± 1.17 a

Mean 1.98 ± 0.13 A 3.75 ± 0.02 A 3.81 ± 1.71 A 3.58 ± 1.20 B

Uppercase and lowercase letters in the columns do not differ from each other by SNK test at 5% probability, regarding combined treatments and
dilutions, respectively. MS, Murashige and Skoog medium; LB, Luria Bertani solid medium
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remarkably neutral in most analyzed plant developmental fea-
tures, showing an even inhibitory effect of lowest dilution levels
in multiplication rate, root number, and root length. Such a
result suggests that the optimal inoculum level under a plant-
bacterial co-cultivation assay is crucial to accurate predictions
of plant response to exogenous IAA focusing on the potential
use of PGPB (Duca et al. 2014; Arslan and Akkaya 2020).

Endophytic microorganism manifestation in presumed
axenic in vitro cultures has been questioned since they could
be in a latent or in a permanent manner in those cultures
(Almeida et al. 2009; Abreu-Tarazi et al. 2010). Thus, regard-
ing the wide beneficial plant-bacterial interactions and the
great bamboo biodiversity, a deeper investigation of bamboo
endophytes would expand our knowledge on the benefits of
those bacterial communities and their potential as plant
growth promoters in this recognized multifunctional plant
(Moshynets et al. 2012; Ramakrishna et al. 2019).

Conclusion

The first isolation of endophytic bacteria from in vitro cultures
of Dendrocalamus asper and Bambusa oldhamii was per-
formed, as well as the first in vitro co-cultivation experiment
with potential PGPB and a bamboo species, G. chacoensis.
The bacterial collection was composed of 32 isolates capable

to produce IC, then showing growth-promotion potential. In
general, the results suggest that endophyte inoculation did not
cause harmful effects on developmental parameters in in vitro
plants of G. chacoensis. Therefore, the reported possibility of
co-existence of endophytic bacteria in in vitro systems without
major damages compromising plant development would con-
tribute to enhancement of bamboo micropropagation methods
and the large-scale production of plantlets.
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